International Institute of Information Technology, Hyderabad (Deemed to be University)

MA4.101-Real Analysis (Monsoon-2025)

Assignment 2

Due date: **December 2, 2025** Total Marks: 80

Some definitions and facts.

Adherent points. Let $X \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is said to be an adherent point of X if for all $\varepsilon > 0$ there exists $y \in X$ such that $|y - x| \le \varepsilon$. Equivalently, $(x - \varepsilon, x + \varepsilon) \cap X \ne \emptyset$ for all $\varepsilon > 0$.

Limit points. Let $X \subseteq \mathbb{R}$. A point $x \in \mathbb{R}$ is said to be a limit point of X if for all $\varepsilon > 0$ there exists $y \in X \setminus \{x\}$ such that $|y - x| \le \varepsilon$. Equivalently, $(x - \varepsilon, x + \varepsilon) \cap (X \setminus \{x\}) \neq \emptyset$ for all $\varepsilon > 0$.

Closure and closed sets. Let $X \subseteq \mathbb{R}$. The closure \overline{X} of X may be defined as either: (1) the set of all adherent points of X, or (2) the union of X with its limit points. A set X is said to be closed if $\overline{X} = X$.

Continuity of functions. Let $X \subseteq \mathbb{R}$, let $x_0 \in X$, and let $f: X \to \mathbb{R}$ be a function. The function f is said to be continuous at x_0 if either of the following equivalent conditions holds: (1) For all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in X$ with $|x - x_0| < \delta$ we have $|f(x) - f(x_0)| < \varepsilon$. (2) For all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in X$ with $|x - x_0| \le \delta$ we have $|f(x) - f(x_0)| \le \varepsilon$. Thus the use of < or \le in these definitions is irrelevant.

Derivative of functions. Let $X \subseteq \mathbb{R}$, let x_0 be a limit point of X, and let $f:(0,\infty)\to\mathbb{R}$ be a function defined as $f(x)=x^{\alpha}$, where $\alpha\in\mathbb{R}$. Then the derivative of f at $x_0\in(0,\infty)$ is given by $f'(x_0)=\alpha x_0^{\alpha-1}$.

Question 1 [10 Marks]. Let $L \in \mathbb{R}$. Let (x_n) be a real sequence and let $T_n :=$ $x_{n+3} - 3x_{n+2} + 3x_{n+1} - x_n$ and $s_n := \frac{x_{n+2} + x_n}{2}$. If

(P1)
$$\lim_{n\to\infty} T_n = 0$$
, and (P2) $\lim_{n\to\infty} s_n = L$.

Prove that (x_n) is convergent.

Question 2 [10 Marks]. Let $L \in \mathbb{R}$. Let $(x_n)_{n\geq 0}$ and $(y_n)_{n\geq 0}$ be real sequences satisfying properties.

(P1)
$$x_n \le y_n \ \forall \ n \ge 0,$$
 (P2) $\lim_{n \to \infty} (x_n + y_n) = 2L$

(P1)
$$x_n \le y_n \ \forall \ n \ge 0,$$
 (P2) $\lim_{n \to \infty} (x_n + y_n) = 2L,$
(P3) $\lim_{n \to \infty} (y_{n+1} - x_n) = 0,$ (P4) $\lim_{n \to \infty} (y_n - x_{n+1}) = 0.$

Prove that both (x_n) and (y_n) converge, and that $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = L$. [Hint/Caution: In this problem, the existence of $\lim x_n$ and $\lim y_n$ is what we must prove, so limit algebra such as $\lim(y_{n+1}-x_n)=\lim y_{n+1}-\lim x_n$ is not applicable. Try writing a recurrence relation for $(y_{n+1}-x_{n+1}):=t_{n+1}$ involving convergent sequences from question.

Question 3 [10 Marks]. Let the real numbers a and b satisfy a < b. Let the function $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Define

$$L(t) = f(a) + \frac{f(b) - f(a)}{b - a} (t - a), \qquad t \in [a, b],$$

and define $K(t) = f(t) - L(t), t \in [a, b].$

- (A). [3 Marks] Show that K satisfies the hypotheses of Rolle's theorem on [a, b].
- (B). [7 Marks] Define the function $\Phi(t) = K(t) K(a+b-t)$, $t \in [a,b]$ and show that there exists a point $c \in (a, b)$ for which

$$f'(c) + f'(a+b-c) = 2\frac{f(b) - f(a)}{b-a}.$$

Question 4 [10 Marks]. Let M > 0 and a < b. Let $f : [a,b] \to \mathbb{R}$ be a function which is continuous on [a, b] and differentiable on (a, b), and such that

$$|f'(x)| \le M$$
 for all $x \in (a, b)$.

Show that for any $x, y \in [a, b]$ one has

$$|f(x) - f(y)| \le M |x - y|.$$

[Hint: Apply the Mean Value Theorem to f on a suitable subinterval. Functions satisfying the inequality

$$|f(x) - f(y)| \le M|x - y|$$

are called Lipschitz continuous with Lipschitz constant M. Thus functions with bounded derivative are Lipschitz continuous.]

Question 5 [10 Marks]. Let $X \subset \mathbb{R}$ and define the distance from a point $x \in \mathbb{R}$ to X by

$$d(x, X) := \inf\{|x - y| : y \in X\}.$$

(A) [4 Marks] Show that a point $x \in \mathbb{R}$ belongs to the closure \overline{X} of X if and only if

$$d(x, X) = 0.$$

(B) [4 Marks] Let $Y \subset \mathbb{R}$ be another subset. Show that for all $x \in \mathbb{R}$:

$$d(x, X \cup Y) = \min\{d(x, X), d(x, Y)\}, \qquad d(x, X \cap Y) \ge \max\{d(x, X), d(x, Y)\}.$$

(C) [2 Marks] Show that X is closed if and only if for every $x \in \mathbb{R}$,

$$d(x, X) = 0 \implies x \in X.$$

Question 6 [10 Marks]. Let X and Y be arbitrary subsets of \mathbb{R} . Let \overline{X} and \overline{Y} be the closures of X and Y in \mathbb{R} , respectively. Prove the following.

- (A). [2 Marks] $X \subseteq \overline{X}$.
- (B). [2 Marks] $\overline{X \cup Y} = \overline{X} \cup \overline{Y}$.
- (C). [2 Marks] $\overline{X \cap Y} \subseteq \overline{X} \cap \overline{Y}$.
- (D). [2 Marks] If $X \subseteq Y$, then $\overline{X} \subseteq \overline{Y}$.
- (E). [2 Marks] $\overline{(\overline{X} \cap \overline{Y})} = \overline{X} \cap \overline{Y}$.

Question 7 [10 Marks]. Let $(a_n)_{n\geq 1}$ be a real sequence, and $c_n := \frac{a_n+2a_{n+1}}{3}$ for each $n\geq 1$. Assume that the following three series converge:

$$O := \sum_{n=1}^{\infty} a_{2n-1}, \qquad C := \sum_{n=1}^{\infty} c_n, \qquad C_{\text{odd}} := \sum_{n=1}^{\infty} c_{2n-1}.$$

Prove that the full series $\sum_{n=1}^{\infty} a_n$ converges and equals $(O+3\,C_{\mathrm{odd}})/2$.

Question 8 [10 Marks]. Define the function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

- (A). [5 marks] For which points $x_0 \in \mathbb{R}$ is f continuous? Prove your answer.
- (B). [5 marks] For which points $x_0 \in \mathbb{R}$ is f differentiable? Prove your answer and compute the derivative where it exists.